Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Zhao-Di Liu, ${ }^{\text {a }}$ Yang Qu, ${ }^{\text {b }}$
Min-Yu Tan ${ }^{\text {b }}$ and
Hai-Liang Zhu ${ }^{\text {a }}$

${ }^{\text {a }}$ Department of Chemistry, Fuyang Normal College, Fuyang, Anhui 236041, People's Republic of China, and ${ }^{\mathbf{b}}$ Department of Chemistry, Lanzhou University, Lanzhou 730000, People's Republic of China

Correspondence e-mail:
hailiang_zhu@163.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.008 \AA$
R factor $=0.048$
$w R$ factor $=0.111$
Data-to-parameter ratio $=14.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

5-Bromosalicylic acid

The title compound, $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{BrO}_{3}$, crystallizes with two independent molecules in the asymmetric unit. All the O atoms in the two molecules contribute to the formation of a threedimensional hydrogen-bonded network.

Comment

The asymmetric unit of the title complex, (I), consists of two independent molecules of 5-bromosalicylic acid (Fig. 1). In both independent molecules, the bond lengths and angles are in the normal ranges. The $\mathrm{C}-\mathrm{C}$ bond lengths of the benzene rings are in the range 1.353 (7) -1.404 (7) \AA, the $\mathrm{C} 5-\mathrm{Br} 1$ bond length is 1.904 (5) \AA and the $\mathrm{Br} 2-\mathrm{C} 12$ bond length is 1.897 (5) \AA. The C1-C6 and C8-C13 rings are planar, with a mean deviation of $0.0033 \AA$. The benzene rings of the two independent molecules in the asymmetric unit are almost perpendicular to one another, with a dihedral angle of 89.1 (3) ${ }^{\circ}$.

(I)

All the O atoms in the two independent molecules contribute to the formation of intermolecular hydrogen bonds, so forming a three-dimensional network (details are given in Table 1 and Fig. 2).

Experimental

Crystals of compound (I) were obtained by evaporation of an ethanol-water ($1: 2 \mathrm{v} / \mathrm{v}, 10 \mathrm{ml}$) solution of 5-bromosalicylic acid ($1 \mathrm{mmol}, 0.22 \mathrm{~g}$). Colorless crystals of (I) were collected, washed with water and dried in a vacuum using CaCl_{2} (yield 42.5%). Elemental analysis found: $\mathrm{C} 38.68, \mathrm{H} 2.40, \mathrm{Br} 36.77 \%$; calculated for $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{BrO}_{3}$: C 38.74, H 2.32, Br 36.82%.

Figure 1
The structure of the asymmetric unit of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Received 5 July 2004
Accepted 6 July 2004 Online 9 July 2004

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{BrO}_{3}$	$Z=4$
$M_{r}=217.02$	$D_{x}=1.904 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P \overline{1}$	Mo $K \alpha$ radiation
$a=4.8050(10) \AA$	Cell parameters from 2884
$b=12.047(2) \AA$	reflections
$c=14.666(3) \AA$	$\theta=6-27.5^{\circ}$
$\alpha=114.06(3)^{\circ}$	$\mu=5.38 \mathrm{~mm}^{-1}$
$\beta=90.40(3)^{\circ}$	$T=293(2) \mathrm{K}$
$\gamma=101.19(3)^{\circ}$	Rod, colorless
$V=756.9(3) \AA^{3}$	$0.14 \times 0.06 \times 0.05 \mathrm{~mm}$
Data collection	
Bruker SMART CCD area-detector	2884 independent reflections
diffractometer	1786 reflections with $I>2 \sigma(I)$
φ and ω scans	$R_{\text {int }}=0.036$
Absorption correction: multi-scan	$\theta_{\max }=26.0^{\circ}$
$\quad(S A D A B S ;$ Sheldrick, 1996$)$	$h=-5 \rightarrow 5$
$T_{\text {min }}=0.514, T_{\text {max }}=0.767$	$k=-14 \rightarrow 14$
5095 measured reflections	$l=-18 \rightarrow 18$
$R e f i n e m e n t$	
Refinement on F^{2}	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.048$	$\mathrm{H}-$ atom parameters constrained
$w R\left(F^{2}\right)=0.111$	$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0474 P)^{2}\right]$
$S=0.95$	where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
2884 reflections	$(\Delta / \sigma)_{\max }=0.003$
199 parameters	$\Delta \rho_{\max }=0.52 \mathrm{e} \AA^{-3}$
	$\Delta \rho_{\min }=-0.29 \mathrm{e} \AA^{-3}$

Table 1
Hydrogen-bonding geometry $\left(\AA{ }^{\circ}{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 A \cdots \mathrm{O} 2^{\mathrm{i}}$	0.85	1.83	2.681 (5)	179
$\mathrm{O} 3-\mathrm{H} 3 \mathrm{~B} \cdots \mathrm{O} 2$	0.85	1.87	2.614 (5)	145
$\mathrm{O} 4-\mathrm{H} 4 \mathrm{~B}^{\cdots} \mathrm{O}^{\text {ii }}$	0.85	1.80	2.648 (5)	177
O6-H6C \cdots O5	0.85	1.90	2.633 (5)	144

Symmetry codes: (i) $2-x,-y, 2-z$; (ii) $-x, 1-y, 1-z$.
All the H atoms were placed in geometrically idealized positions $(\mathrm{C}-\mathrm{H}=0.96 \AA$ and $\mathrm{O}-\mathrm{H}=0.85 \AA)$ and allowed to ride on their parent atoms with $U_{\text {iso }}(\mathrm{H})=0.08 \AA^{2}$.

Figure 2
The crystal packing of (I), showing the $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonding interactions as dashed lines.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT; data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

The authors thank the Education Office of Anhui Province, People's Republic of China, for research grant No. 2004kj300zd.

References

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version. 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

